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Abstract 
 

The discovery of sequential patterns, which extends 
beyond frequent item-set finding of association rule mining, 
has become a challenging task due to its complexity. 
Essentially, a user would specify a minimum support 
threshold with respect to the database to find out the 
desired patterns. The mining process is usually iterative 
since the user must try various thresholds to obtain the 
satisfactory result. Therefore, the time-consuming process 
has to be repeated several times. However, current 
approaches are inadequate for such process due to the 
long execution time required for each trial. In order to 
minimize the total execution time and the response time for 
each trial, we propose a knowledge base assisted 
algorithm for interactive sequence discovery, called KISP. 
KISP constructs a knowledge base accumulating the 
pattern information in individual mining, eliminates 
considerable amount of potential patterns to facilitate 
efficient support counting, and speeds up the whole 
process. In addition, we further optimize the algorithm by 
direct generations of the reduced candidate sets and 
concurrent counting of variable sized candidates. For 
some queries, KISP may eliminate database access 
completely. The conducted experiments show that KISP 
outperforms GSP, a state-of-the-art sequence mining 
algorithm, by several orders of magnitudes for interactive 
sequence discovery. 

1. Introduction 

Mining sequential patterns, which finds out temporal 
associations among item-sets in the sequence database, is 
an important issue in data mining [2, 4, 6, 7, 13, 16]. A 
classic application of the problem is the market basket 
analysis whose database contains purchase records, where 
each record is an ordered sequence of itemsets (sets of 
items) bought by a customer. The objective is to discover 
the itemsets in future purchase after certain itemsets were 
bought. For example, we may obtain a sequential pattern 
“(1, 3, 4)⇒(2, 5) [support=30%]” after mining. The 
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pattern indicates that 30% of the customers who purchase 
items 1, 3 and 4 at the same time would buy items 2 and 5 
later. The mining technique can be applied to various 
domains such as discovering the relationships between the 
symptoms and certain diseases in medical applications. In 
comparison to the mining of association rules [3], 
sequential pattern mining is more complicated because not 
only the frequent itemsets but also the temporal 
relationships must be found. 

The mining process is very difficult and 
time-consuming because patterns could be formed by any 
permutation of itemsets formed by any combination of 
possible items in the database. In order to distinguish the 
interesting patterns, a user must supply a minimum support 
threshold (abbreviated minsup) for the mining. The result 
of mining finds out the set of patterns having supports 
greater than or equal to the minsup. The support of a 
pattern is the percentage of sequences (in the database) 
containing the pattern. The discovered patterns are called 
sequential patterns or frequent sequences. Most 
approaches focused on minimizing the search space of 
potential sequential patterns (called candidates) [2, 14], or 
on minimizing the required disk I/O due to the multiple 
database scanning [13, 16]. All these approaches discover 
the patterns by directly executing the mining algorithms 
once a minsup is specified. 

However, the mining process is typically iterative and 
interactive since a user may specify a minsup value that 
results in too many or too few patterns. Usually, the user 
must try various minsups until the result is satisfactory. 
Nevertheless, most approaches are not designed to deal 
with repeated mining under such circumstance so that each 
minsup invokes a re-mining from scratch. Some 
approaches solved the interactive problem by 
pre-processing using an assumed least minsup [11]. 
Nevertheless, the lengthy pre-processing has to be 
executed again if a user supplies a minsup below the 
assumed least value. 

In this paper, we propose a simple approach, called 
KISP, to improve the efficiency of sequential pattern 
discovery with changing supports. KISP utilizes the 
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information obtained from prior mining processes, and 
generates a knowledge base (abbreviated KB) for further 
queries about sequential patterns of various minsups. 
When the results cannot be directly derived from the 
knowledge base, KISP incorporates KB into a fast 
sequence discovery by eliminating the candidates existing 
in KB before support counting. Unlike those approaches 
assuming a least minsup for pre-processing before iterative 
mining, KISP accepts any minsup value and has no 
difficulty in mining huge databases even with a small main 
memory. Furthermore, we provide two optimizations to 
speed up KISP. The direct generation of new candidates 
eliminates candidate searching in KB and the concurrent 
support counting reduces database scanning. The 
conducted experiments on well-known synthetic data show 
that the proposed algorithm effectively improves the 
interactive mining performance. 

The rest of the paper is organized as follows. We 
formulate the problem of interactive sequential pattern 
mining in Section 2 and review some related algorithms in 
Section 3. Section 4 presents the proposed approach for 
the interactive discovery problem. The experimental 
evaluation is described in Section 5. Section 6 concludes 
our study. 

2. The problem of interactive sequence 
discovery 

Let Ψ = {α1, α2, …, αz} be a set of literals, called items. 
An itemset I = (β1, β2, …, βm) is a set of m items, such that 
I ⊆ Ψ. A sequence x, denoted by <a1a2…an>, is an ordered 
set of n elements where each element aj is an itemset. The 
size of the sequence x, denoted by |x|, is the total number 
of items in all the elements in x. Sequence x is a 
k-sequence if |x| = k. For example, <(2)(3,4)> and 
<(1)(2)(1)> are all 3-sequences. A sequence ω = 
<b1b2…bw> is a subsequence of another sequence ϖ= 
<a1a2…an> if there exist 1 ≤ i1< i2 < …< iw ≤ n such that b1 
⊆ ai1

, b2 ⊆ ai2
, …, and bw ⊆ aiw

. Sequence ϖ contains 
sequence ω if ω is a subsequence of ϖ. For instance, 
<(2)(5)> is a subsequence of <(2)(1)(3,5)> since (2) ⊆ (2) 
and (5) ⊆ (3,5).  

Each customer record in the database DB is referred to 
as a data sequence, which is a sequence of purchased 
itemsets ordered by transaction time. The support of 
sequence x, denoted by x.sup, is the number of data 
sequences containing x divided by the total number of data 
sequences in database DB. The minsup is the user 
specified minimum support threshold. A sequence x is a 
frequent sequence if x.sup ≥ minsup. The sequence x is 
also called a sequential pattern. Given the minsup and the 
database DB, the problem of sequential pattern mining is 
to discover the set of all sequential patterns, denoted by 
S[minsup].  
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The interactive sequence discovery process is described 
as follows. Given the database DB, the user queries with 
several minsup values interactively, and finds out the 
desired set of sequential patterns with respect to the final 
minsup. The objective of interactive discovery is to 
respond to each query quickly, and to minimize the overall 
mining time for the whole process accordingly.  

3. Related work 

3.1. Algorithms for sequential pattern mining 

The AprioriAll [2] is the first algorithm dealing with 
sequential pattern discovery [2, 7, 15]. In subsequent work, 
the same authors proposed the GSP (Generalized 
Sequential Pattern) algorithm that outperforms AprioriAll 
[14]. GSP discovers the sequential patterns through 
multiple database scanning by generating-and-testing 
candidate k-sequences in k-th database pass. The 
candidates having enough supports become seeds for 
generating candidates in the next pass. GSP terminates 
when there is no candidate any more. We further describe 
the two essential sub-processes in the following. 
Candidate generation: Let Sk[minsup] be the set of all 
frequent k-sequences, and Xk[minsup] be the set of all 
candidate k-sequences with respect to minsup. GSP 
generates Xk[minsup] by self-joining Sk-1[minsup] to obtain 
a superset of Xk[minsup] and pruning those candidates 
having any (k-1)-subsequence which is not in Sk-1[minsup]. 
In the first step, we join a sequence x with another 
sequence y if the subsequence obtained by dropping the 
first item of x is the same as the subsequence obtained by 
dropping the last item of y. The resultant candidate from 
this join is x extended with the last item of y. For example, 
the candidate <(1)(3)(5)> is generated by joining <(1)(3)> 
with <(3)(5)>, and the candidate <(1)(3,5)> is generated 
by joining <(1)(3)> with <(3,5)>. Moreover, Xk[minsup] ⊇ 
Sk[minsup] [14]. 
Support counting: GSP stores candidates in a hash-tree 
structure [3, 14]. Candidates would be placed in the same 
leaf if their leading items, starting from the first item, were 
hashed to the same node. The next item is used for hashing 
when an interior node, instead of a leaf node, is reached 
[14]. The candidates required for checking against a data 
sequence are located in leaves reached by applying the 
hashing procedure on each item of the data sequence [14]. 
The support of the candidate is incremented by one if it is 
contained in the data sequence. 

In addition, the SPADE (Sequential PAttern Discovery 
using Equivalence classes) algorithm finds out sequential 
patterns using vertical database layout and join-operations 
[16]. Vertical database layout transforms data sequences 
into item-oriented lists. The lists are joined to form a 
sequence lattice, in which SPADE searches and discovers 
the patterns [16].  
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 Recently, the FreeSpan (Frequent pattern-projected 
Sequential Pattern Mining) algorithm was proposed to 
mine sequential patterns by a database projection 
technique [4]. Based on a similar projection technique, the 
authors in [12] proposed the PrefixSpan (Prefix-projected 
Sequential pattern mining) algorithm. PrefixSpan first 
finds the frequent items after scanning the database once. 
The sequence database is then projected, according to the 
frequent items, into several smaller databases. Finally, all 
sequential patterns are found by recursively growing 
subsequence fragments in each projected database. 
Employing a divide-and-conquer strategy with the 
PatternGrowth methodology, PrefixSpan efficiently mines 
the complete set of patterns [12].  

However, these algorithms re-execute the mining 
procedure every time a new minsup is specified during the 
interactive process. The response time would be longer for 
queries with smaller minsup values. 

3.2. Algorithms for interactive pattern discovery 

The problem of interactive association discovery was 
addressed in [1]. The method in [1] preprocesses the data 
in the transactional database, and stores frequent itemsets 
in an adjacency lattice. Online repeated queries about 
association rules are answered by graph theoretic 
searching on the lattice.  

Similarly, a knowledge cache is used for interactive 
association discovery in [9]. The knowledge cache 
contains frequent itemsets and the non-frequent itemsets, if 
memory space is available, that have been discovered 
while processing other queries. The study [9] indicated 
that their benefit replacement algorithm is the best caching 
algorithm.  

Although on-line association discovery [1, 5, 9, 10] is 
close to our problem, these approaches aim to interactively 
find frequent itemsets rather than frequent sequences, 
which is more complicated. One related work of 
interactive sequence mining extended the SPADE 
algorithm [16] into the ISM (Incremental Sequence Mining) 
algorithm for incremental and interactive sequence mining 
[11]. All queries are performed on a pre-processed 
in-memory data structure, the Increment Sequence Lattice 
(ISL). Therefore, A ‘small enough’ minsup must be 
pre-selected to apply SPADE for pre-processing and saving 
the results in ISL. Nevertheless, if a query involves a 
threshold smaller than the pre-selected minsup, another 
(more) lengthy mining process must be performed to 
generate a new ISL for the new query. Moreover, as 
described in [11], the ISM might encounter memory 
problem if the number of the potentially frequent patterns 
is too large.  

Without any assumption on the minsup value and on the 
required memory, the proposed algorithm speeds up 
interactive sequence discovery by using the acquired 
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information with optimizations like direct 
candidate-generation and concurrent counting. 

4. The proposed algorithm for interactive 
sequence discovery 

4.1. The KISP (Knowledge base assisted 
Incremental Sequential Pattern) mining algorithm 

KISP enhances GSP with a knowledge base (denoted by 
KB) for interactive sequence discovery. When the desired 
patterns cannot be obtained from KB, KISP speeds up 
support counting by eliminating considerable amounts of 
candidates existing in KB. Two optimizations, direct 
new-candidate generation in Section 4.2 and concurrent 
support-counting in Section 4.3, further make a significant 
performance improvement. Figure 1 outlines the proposed 
KISP algorithm for interactive discovery of sequential 
patterns. 

KISP works like GSP for the very first mining. The 
fundamental KB is built, only once, by a simple scan over 
the database to count the supports of candidate 
1-sequences. The supports of all candidate 1-sequences are 
included in KB, and S[minsup] contains the frequent 
1-sequences. At the end of this mining, KB would collect 
the supports of all the candidates in each pass, and 
KB.base is the minsup designated for this mining. 

In addition to the sequential patterns, we also keep the 
supports of all counted candidates in KB regardless of their 
values for two reasons. First, several currently 
non-frequent candidates might turn out to be frequent 
when a smaller minsup is specified subsequently. We can 
immediately obtain these patterns from KB without any 
database access. Second, to find out the true patterns, the 
mining process generally counts a large number of 
candidates although they are eventually rejected. We can 
get rid of the ‘useless counting’ for the ‘commonly 
non-frequent’ candidates if their supports were kept. For 
example, those candidates ever counted with the support 
value of zero would not be inserted into the candidate 
hash-tree afterward. Consequently, a faster counting is 
enabled due to the smaller hash-tree of the reduced set of 
candidates. 

For subsequent queries, the non-empty KB contains the 
supports of all the generated candidates while mining with 
KB.base as the support threshold. Assume that the user 
specifies minsup for mining. The values of minsup and 
KB.base determine whether new counting is required. If 
the minsup is greater than KB.base, we simply retrieve 
from KB those patterns satisfying the new minsup. KB and 
KB.base stay intact since no counting is performed. 
Tremendous gains in performance can be resulted from 
direct retrieval of valid patterns from KB without 
re-examining the huge database. 
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Algorithm  KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
    KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.base be the counting base (the smallest minsup used) in constructing the KB
1)  if KB = φ then KB = {x and x.sup, ∀ x ∈ X1} ;
2)  S[minsup] = {x| x∈KB ∧ x.sup ≥ minsup} ; // obtain valid sequential patterns from knowledge base
3)  if  minsup < KB.base  then // mine new patterns and accumulate new knowledge
4)     k = 2 ;
5)     generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6)     Xk'= Xk [minsup] - {x| x ∈ KB} ; // eliminate those candidate k-sequences in KB
7)     while Xk' ≠ φ do // there exist candidate k-sequences, obtains their supports
8)        forall data sequences ds in database DB do
9)           for each candidate x ∈ Xk' do
10)             increase the support of x if x is contained in ds ;
11)         endfor
12)      endfor
13)      KB = KB ∪ {x and x.sup, ∀ x ∈ Xk'} ; // collect new candidates and their supports
14)      S[minsup] = S[minsup] ∪ {x | x.sup ≥ minsup ∧  x ∈ Xk'} ; // collect new patterns from Xk'
15)      k = k+1 ;
16)      generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ; 
17)      Xk'= Xk [minsup] - {x| x ∈ KB} ; // the reduced set eliminates candidate k-sequences in KB
18)   endwhile
19)   KB.base = minsup ; // update the counting base of KB
20)endif

Figure 1. Algorithm KISP 
In case that minsup is smaller than KB.base, we have to 
mine the database for new patterns that are not in KB. The 
fundamental difference between KISP and GSP is that 
KISP only needs to count the supports of the ‘new’ 
candidates by sparing the candidates already existing in 
KB. Even the modest technique spares the counting of a 
substantial number of candidates, as confirmed by our 
experiments. In each pass, we first generate the candidates 
and then remove those existing in KB. Next, we expand 
KB with the support of every new candidate to re-use the 
counting effort for future queries. The sequential patterns 
are collected for the corresponding query. Finally, KB.base 
is replaced by the new minsup since the counting base is 
changed. The ‘new pattern’ mining part, which is also the 
part of new information acquisition step, of the procedure 
is activated only when the subsequent minsup is smaller 
than KB.base. 

The counting effort of each mining incrementally 
expands KB so that KISP is gradually enhanced with 
greater candidate reduction capability. KISP becomes 
more powerful as the minsup gets smaller gradually during 
the interactive process. 

4.2. New-candidate generation by direct 
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computation 

As described in Section 4.1, KISP removes the 
candidates existing in KB before counting. The remaining 
candidates are referred to as new-candidates. Instead of 
generating all candidates and then removing the counted 
ones, we use Theorem 1 to generate the new-candidates in 
pass k (denoted by Xk') directly. In Theorem 1, Sk[minsup] 
denotes the set of frequent k-sequences, Xk[minsup] 
denotes the set of candidate k-sequences with respect to 
minsup, and “⊗” represents the join operation described in 
Section 3.1. We use Nk[minsup] to designate the new 
frequent k-sequences (due to minsup) by contrast to the 
frequent k-sequences in KB. Hence, Sk[minsup] = 
Sk[KB.base] ∪ Nk[minsup]. 
Theorem 1. Xk' = (Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪ 
(Nk-1[minsup] ⊗ Nk-1[minsup]). That is, Xk' is the union of 
the two sets; one obtained from joining the frequent 
(k-1)-sequences in KB with the new frequent 
(k-1)-sequences, the other obtained from self-joining the 
new frequent (k-1)-sequences. 
Proof. By definition, Xk[minsup] = Sk-1[minsup] ⊗  

Sk-1[minsup].  
1) Xk[minsup] = (Sk-1[KB.base] ∪ Nk-1[minsup]) ⊗  
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(Sk-1[KB.base] ∪ Nk-1[minsup]). 
2) Xk[minsup] = (Sk-1[KB.base] ⊗ Sk-1[KB.base]) ∪  

(Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗  
Sk-1[KB.base]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]). 

3) Xk[minsup] = Xk[KB.base] ∪ (Sk-1[KB.base] ⊗  
Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup])  
due to Xk[KB.base] = Sk-1[KB.base] ⊗ Sk-1[KB.base] and 
that Nk-1[minsup] ⊗ Sk-1[KB.base] is the same set as  
Sk-1[KB.base] ⊗ Nk-1[minsup]. 

4) Since Xk' = Xk[minsup] − Xk[KB.base], Xk' =  
(Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗  
Nk-1[minsup]).                     � 

4.3. Concurrent support counting and the 
placement of variable sized candidates 

KISP might have only very few new-candidates at a 
very low minsup value since the information gathered 
from each mining all contribute to the candidate reduction. 
In each pass, the number of candidates inserted into the 
hash-tree is far less than that of GSP. Thus, KISP is 
enabled to accommodate more candidates in the same 
hash-tree during the same pass of database scanning. 
Consequently, we may release the restriction of counting 
only candidate k-sequences to count variable sized 
candidates concurrently in pass k, and reduce the total 
number of database passes.  

KISP assumes nothing about the main memory size so 
that the available memory might be insufficient for 
generating new candidate k-sequences. Analogous to GSP, 
if the set of frequent (k-1)-sequences cannot fit into the 
memory, we apply the relational merge-join technique 
without pruning [14] to generate Xk', and then output Xk' to 
disk after counting.  

On the contrary, the set of Xk' is possibly small and 
occupies only a small part of the memory. We maximize 
memory utilization by continuously generating the 
candidates of longer size into the hash-tree until the 
memory space is nearly full. KISP can estimate the space 
required for Xk' with Sk-1[KB.base] and Nk-1[minsup], as 
described in the following. 

Considering the number of candidates generated in each 
pass, X2' has more candidates than any other Xk' because 
none in the candidate superset of size two can be pruned. 
For candidates of Xk' where k > 2, some frequent 
(k-1)-sequences are not to be joined if their subsequences 
do not match. Assume the number of patterns in 
S1[KB.base] is p and the number of patterns in N1[minsup] 
is q. The number of new-candidates in pass 2 is 
[3(p+q)2-(p+q)]/2-(3p2-p)/2 = 3pq+(3q2-q)/2. This formula 
can be applied to estimate roughly the maximum number 
of candidates in other passes. Whenever there is room for 
the next set of candidates in a batch, KISP continuously 
generates and inserts them into the same hash-tree.  
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The hash-tree in GSP is designed to store the same 
sized candidates in the leaves originally. Accommodating 
variable sized candidates in the same hash-tree might 
produce the problem of having no item for hashing. For 
example, inserting a candidate 4-sequence might cause the 
re-distribution of an overflowed node, while the 
re-distribution might need to hash on the fourth item of a 
candidate 3-sequence in the node. We modify the hashing 
procedure to put the same prefixed candidates, despite 
their sizes, in the same leaf. In case there is no item for 
hashing any more, the candidate is stored in one of the 
descendent leaves (due to splitting the overflowed leaf). 
We select the leaf having the fewest number of candidates 
stored to maximize memory utilization. Since candidates 
of different size are stored in the same hash-tree, we can 
check the variable sized candidates against a data sequence 
at the same time. Therefore, the concurrent support 
counting minimize the number of database scanning 
required in KISP. 

Note that a similar technique named pass bundling is 
described for association mining in [8]. However, pass 
bundling statically sets a limit to determine whether the 
generation should be continued or not, while KISP 
dynamically estimates and computes the available memory 
for maximum utilization.  

4.4. Manipulation of the knowledge base 

The knowledge base should provide fast access to the 
supports of patterns, support quick estimation of candidate 
storage required, and be able to expand incrementally. 
Figure 2 displays the logical structure of the knowledge 
base. 

 A knowledge base is composed of a minimal 
KB.base, and one or more KB heads. The minimal 
KB.base is the smallest KB.base among all the KB.bases in 
the KB heads. We create a KB head to store the newly 
acquired information only when the ‘new pattern’ mining 
part of KISP is executed. A KB head comprises (1) a 
KB.base indicating the counting base while adding this 
head (2) the number of pattern-support heads 
(ps_heads) indicating the total number of pattern-support 
heads in this KB head (3) the pattern-support heads 
summarizing the pattern-support tables, and (4) the 
position of next KB head linking the next KB head so that 
the knowledge base can ‘grow’ incrementally. 

We group all the same sized patterns in the 
pattern-support tables so that the pattern information of 
desired size can be directly found through the position of 
pattern-support in the corresponding ps_head. The 
summary information (the size of the pattern, the total 
number of counted candidates, and the total number of 
non-zero patterns) in ps_head is used to estimate the 
number of new-candidates. The pattern-support table is a 
list of (support, pattern)-pairs. Note that we keep only the 
  $17.00 (C) 2003 IEEE 5
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patterns with non-zero support value to minimize the total 
size of each pattern-support table. The supports of patterns 
(of the same size) are stored in support-descending order 
in the structure to ease the searching of valid patterns on 
answering an online query. An option to eliminate support 
sorting is writing the supports in the order of hash-tree 
traversal. Even when the pattern supports are directly 
stored without sorting, searching within the knowledge 
base is still more efficient than re-mining. 

5. Experimental results 

Several experiments were conducted to assess the 
performance of the KISP algorithm, using an 866 MHz 
Pentium-III PC with 256MB memory running the 
Windows NT. Like most studies on sequential pattern 
mining [2, 4, 12, 14, 16], we generated the synthetic 
datasets for these experiments using the procedure 
described in [2]. Due to space limit, we only report the 
results on dataset C20-T2.5-S4-I1.25 having 100,000 
sequences, |N=10000, NS=2500, and NI=25000. We refer 
readers to [2] for the details of the parameters.  

5.1. Comparisons of KISP and GSP 

The effect of using knowledge base without concurrent 
counting optimization is studied first. The interactive 
discovery comprises five consecutive queries, with minsup 
values starting from 2.5% down to 0.5%. 

Figure 3 compares the relative performance of KISP 
and GSP. The total execution time is 435 minutes by KISP 
and 799 minutes by GSP. KISP runs faster than GSP for 
individual mining except for the very first mining. Figure 
3 also depicts the ratios of the number of candidates in 
GSP to those in KISP. Take minsup = 0.75% for example, 
the execution time ratio of GSP to KISP is 2.1 times. The 
time saved by KISP resulted from the reduced number of 
candidates—GSP counted 2.3 times the number of 
candidates. To illustrate the accumulating power of KB, 
the number of candidates generated by GSP and by KISP 
in each pass is enumerated in Table 1. 

KISP exhibits excellent mining capability for query 
intensive applications. As we increased the number of 
queries from 3 to 11, the average execution time (also the 
time required for posterior queries) decreased from 1763 
seconds to 514 seconds. 

In the experiments with concurrent optimization, the 
number of database scanning reduced by concurrent 
support counting is 6, and the reduced execution time is 94 
seconds for the mining with minsup=0.5%. Most scans 
were combined in pass three so that the total number of 
passes and the total execution times were reduced. 

When users need to find the appropriate set of patterns 
by reducing the number of patterns found in a query, the 
next specified minsup would be greater than the counting 
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base of KB (KB.base). In the next experiment, all 
KB.bases of the KBs were 0.5%, and 100 minsups ranging 
from 0.5% to 2.5% were randomly selected. The mining 
results are all available in very short time with average 
execution time 4.3 seconds and maximum execution time 
22 seconds. For most queries, the execution time of KISP 
is several orders of magnitude faster than GSP, which 
always re-mines from scratch. However, one drawback of 
KISP is that the size of KB, in proportion to the number of 
candidates stored, might be larger than the size of the 
original database. For example, the size ratio of KB to DB 
is 4.9 for minsup=0.5%. 

5.2. Scale-up experiments 

In the scale-up experiments, the total number of 
customers was increased from 100K to 1000K, running the 
same series of minsup (2.5% down to 0.5%). Since KISP 
retrieves merely Sk-1[KB.base] (i.e. frequent 
(k-1)-sequences in KB) for generating candidate 
k-sequences, even without large memory, KISP may 
efficiently discover patterns in large databases with KB. 
Figure 4 shows that the execution time of KISP increases 
linearly as the database size increases. The execution times 
are normalized with respect to the time for 100,000 
customers. 

6. Conclusions 

The knowledge discovering process is iterative and 
requires many times of mining since no one can predict the 
best parameters for the desired outcome. Even a change in 
minimum support value would demand current approaches 
to execute the time-consuming process again, not to 
mention the various query operations such as mining 
constrained patterns [11] or patterns with hierarchy [14].  

In this paper, we propose a simple but efficient mining 
algorithm for interactive discovery of sequential patterns 
about varying support thresholds. The proposed KISP 
algorithm constructs a knowledge base KB in-disk to 
minimize the response time for iterative mining. No 
mining is required if the query result is a subset of KB; 
otherwise, we speed up individual mining through 
accessing only frequent sequences in KB for direct 
new-candidate generation. The proposed approach directly 
generates only the new candidates not being considered 
before, concurrently counts variable sized candidates in 
the same database scanning, and incrementally expands 
the knowledge base. Only the non-zero patterns grouping 
by size are kept to minimize the size of KB while 
providing fast access to pattern information. The 
performed experiments show that KISP enhances GSP by 
several orders of magnitude for interactive sequence 
mining, with good linear scalability.  

However, the disk space could be a problem without 
 3 $17.00 (C) 2003 IEEE 6
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further investigation on minimizing KB for very low 
thresholds. Future work may include the maintenance of 
KB for database updating [6]. For interactive queries other 
than varying thresholds, though we may answer these 
queries by reading patterns in KB into an ISL-like [11] 
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pattern-lattice, it is desirable to integrate the query 
requirements into KISP for faster response. 

 

KB.base number of ps_heads

position of next KB head

Minimal KB.base 

: KB head : pattern-support head (ps_head)

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

 
Figure 2. Structure of the knowledge base 
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Figure 3. Relative mining performance of GSP and KISP 
Table 1. Number of candidates in each pass (minsup =0.5%) 

Pass number 
Number of candidates 1 2 3 4 5 6 7 8 

GSP 10000 7673835 7986 2800 1339 430 63 3 
KISP 0 3122860 5941 2387 1259 424 63 3 
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Scale-up Performance of KISP
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Figure 4. Linear scalability of the database size 
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